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We formulate the mapping between a large class of nonlinear wave equations and flow
equations for a barotropic fluid with internal surface tension and capillary effects. Motivated
by statistical mechanics and multi-channel physics arguments, we focus on wave equations
with logarithmic nonlinearity, and further generalize them to matrix equations. We map the
resulting equation to flow equations of multi-channel or multi-component Korteweg-type
materials. For some special cases, we analytically derive Gaussian-type matrix solutions and
study them in the context of fluid mechanics.
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1. Introduction

Wave equations with logarithmic nonlinearity began to gain a considerable interest among phy-
sicists since works by Rosen (1968) and Bialynicki-Birula and Mycielski (1976). The correspon-
ding models have been proven to be instrumental in dealing with physics of quantum fields
and particles (Rosen, 1968, 1969; Bialynicki-Birula and Mycielski, 1979; Zloshchastiev, 2010,
2011), nonlinear generalizations of quantum mechanics (Bialynicki-Birula and Mycielski, 1976),
optics and transport or diffusion phenomena, nuclear physics, theory of dissipative systems and
quantum information (Yasue, 1978; Brasher, 1991; Znojil et al., 2017; Zloshchastiev, 2018a),
theory of quantum liquids and superfluidity (Zloshchastiev, 2011, 2012, 2017; Avdeenkov and
Zloshchastiev, 2011; Bouharia, 2015) and theory of physical vacuum and classical and quantum
gravity (Zloshchastiev, 2010, 2011; Scott et al., 2016).

Special attention was paid to the applications of these equations in fluid mechanics, inclu-
ding the classical hydrodynamics of Korteweg-type materials, such as the barotropic Korteweg
capillary fluids (De Martino et al., 2003; Lauro, 2008; Zloshchastiev, 2018b). In such a class of
models, often referred as diffuse interface models, the capillary interface is viewed as a diffu-
sion transition domain of rapid smooth variation of density, while surface tension is intrinsically
incorporated (Dunn and Serrin, 1985; Dell’Isola and Kosiński, 1993; Anderson et al., 1998).
This allows us to describe flows with spontaneous nucleation, coalescence and breakdown of
density inhomogeneities in two-phase systems (Antanovskii, 1996). In this paper, we continue
our studies in this direction, focusing on constructing models which can be used to describe
a variety of multi-channel phenomena occuring in mechanics, such as multi-channel scattering,
multi-component fluids and capillary microfluidic arrays and chips.

The paper is structured as follows. In Section 2, we give a brief introduction to the theory
of logarithmic wave equations, assuming a single-channel case for simplicity. In Section 4, we
consider multi-channel systems, introduce the matrix generalization of the logarithmic wave
equation, and formulate basic notions of the approach.
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2. Logarithmic wave equation: original formulation

Let us consider a material (fluid being a special case) which is in thermal contact with a rese-
rvoir of infinitely large heat capacity so as to maintain constant temperature. We assume that
its microscopic structure can be regarded as a many-body system of particles, atoms and mole-
cules whose interaction energy is larger than its kinetic one; we shall refer to such materials as
condensate-like. This class includes not only low-temperature strongly coupled systems but also
any matter in which density or geometrical constraints make interparticle interaction potential
energies dominate over kinetic energies.
From the viewpoint of statistical mechanics, in such materials, the microstates are natural-

ly represented by a canonical ensemble; therefore their probability P is given by a standard
formula in which kinetic energy is neglected compared to potential energy: P ∝ exp(−E/T ) ≈
exp(−U/T ), where T , E and U are the absolute temperature, energy and potential energy of
a many-body system, respectively; we shall work in the units where the Boltzmann constant
kB = 1.
Let us also assume that the state of such a material can be described by a single complex-

-valued function written in a Madelung form (Rylov, 1999)

Ψ =
√
ρ exp(iS) (2.1)

where ρ = ρ(x, t) is fluid density, and S = S(x, t) is a phase which is related to fluid velocity
u ∝ ∇S. This function naturally obeys the normalization condition
∫

V

|Ψ |2 dV =
∫

V

ρ dV =M > 0 (2.2)

where M and V are the total mass and volume of the material. This poses restrictions which
are similar to a quantum mechanical case: the set of all normalizable functions must constitute
a Hilbert space, such as L2. Assuming that dynamics in a such space is of the Hamiltonian type,
one can derive the operator of the potential

Û ∼ T ln(A|Ψ |2) = −K(T − T0) ln(ρ/ρ0)

where A = 1/ρ0 and K are proportionality constants, and ρ0 and T0 are some critical values
of, respectively, density and temperature at which the statistical effect vanishes (Zloshchastiev,
2018a).
Then the energy conservation law can be recast in the form of a logarithmic Schrödinger-like

equation

i∂tΨ =
(
−D̃
2
∇2 − b ln |Ψ |

2

ρ0

)
Ψ (2.3)

where b = K(T − T0)/η, η and D̃ are positive constants. Here, η has dimensionality of the
Planck constant but not necessarily its value; from now on, we assume that K is absorbed into
η for brevity. The parameter D̃ can be also interpreted as D̃ = η/meff where meff is a mass of
a particle.
It follows also that the nonlinear coupling must be linearly related to thermal temperature T

and to wave-mechanical temperature TΨ

b ∼ T ∼ TΨ (2.4)

where the latter is defined as a thermodynamical conjugate of the entropy function
Sρ = −

∫
V ρ ln(ρ/ρ0) dV . Entropy functions of this kind directly emerge from the logarithmic

term when one averages (2.3) using the inner product in the Hilbert space of functions Ψ (Bra-
sher, 1991; Zloshchastiev, 2010).
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3. Fluid-Schrödinger analogy

In this Section, we derive a formal mapping between wave equations of type (2.3) and flow
equations for a certain class of materials.

3.1. General case

Let us begin with a scalar wavefunction case (i.e., Ψ is a matrix of rank one), and consider
a general U(1)-symmetric Schrödinger equation of the form

i∂tΨ =
[
−D̃
2
∇2 − F (|Ψ |2)

]
Ψ (3.1)

where F (ρ) is a differentiable function on a positive semi-axis ρ, and Ψ obeys normalization
condition (2.2).
By substituting Madelung ansatz (2.1) into Eq. (3.1), and separating real and imaginary

parts, one obtains

∂tρ+ D̃∇ · (ρ∇S) = 0

∂tS −
D̃

2

[
∇ ·
(∇√ρ
√
ρ

)
+
(∇√ρ)2

ρ
− (∇S)2

]
− F (ρ) = 0

(3.2)

where the dot means a scalar product. Taking a gradient of the latter equation and introducing
the fluid velocity

u = D̃∇S (3.3)

we obtain hydrodynamic laws for mass and momentum conservation for a two-phase compressible
inviscid fluid with internal capillarity whose flow is irrotational and isothermal

∂tρ+∇ · (ρu) = 0 ∂tu+ u · ∇u−
1

ρ
∇ ·T = 0 (3.4)

with the stress tensor T being of the Korteweg form with capillary effects (Dunn and Serrin,
1985)

T = −D̃
2

4ρ
∇ρ⊗∇ρ− p̃I (3.5)

where I is the identity matrix, and p̃ is capillary pressure

p̃ = p(ρ)− 1
4
D̃2∇2ρ (3.6)

where

p(ρ) = −D̃
∫
ρF ′(ρ) dρ = D̃

(∫
F (ρ) dρ− ρF (ρ)

)
(3.7)

is a barotropic equation of the state for our fluid, where the prime means a derivative with
respect to the value in the brackets. Furthermore, the speed of sound can be derived as

c2s =
∂p̃

∂ρ
= −D̃ρF ′(ρ)− D̃2

4

∂

∂ρ
∇2ρ (3.8)

where the second term is non-zero only if ∇2ρ can be presented as a function of density.
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Note that in the leading-order approximation with respect to D̃, one can neglect the capillary
term and obtain

p̃ ≈ −D̃
∫
ρF ′(ρ) dρ cs ≈

√
−D̃ρF ′(ρ) (3.9)

In other words, Eq. (3.1) is a concise form of writing two fluid-mechanical Eqs. (3.4). This
makes Schrödinger-like equations useful for studies of the Korteweg-type materials, as well as
for certain generalizations to be discussed below.

3.2. Logarithmic fluid

Let us apply the formulae above for a special case of a logarithmic nonlinearity. We therefore
impose

F (ρ) = b ln ρ (3.10)

which corresponds to Eq. (2.3). Then formulae (3.4)-(3.6) remain intact, but Eq. (3.7) simplifies
to a linear equation

p(ρ) = −D̃bρ (3.11)

which belongs to a perfect-fluid class.

Finally, in the leading-order approximation with respect to D̃, one obtains

p̃ ≈ −D̃bρ ∝ (T − T0)ρ cs ≈
√
−D̃b ∝

√
T − T0 (3.12)

which means that the logarithmic fluid is perfect, and its speed of sound is independent of
density (Zloshchastiev, 2011). These two properties are useful for applying to models of those
strongly-interacting fluids for which the perfect-fluid approximation can serve as a robust, or
leading-order approximation.

4. Multi-channel systems and matrix logarithmic wave equation

Historically, studies of multi-channel phenomena started from multi-channel scattering in particle
physics. For instance, in the reaction between two nuclei such as 12C + d, a variety of mass
rearrangements may be possible, such as 13C + p, 14N + γ, called the mass partition, but in
all cases the sum of the particle masses in each partition is almost the same for each of the
partitions. Therefore, one needs to describe the whole process, taking into account not only the
existence of multiple channels but also their possible interactions (couplings) with each other.
In a broader context of condensed matter physics, multi-channel phenomena can be consi-

dered through the coupled-cluster method (CCM) as described in the work by Čı́žek (1966).
According to this method, the search for a wave function is performed by means of the pre-
multiplication ansatz, sometimes called also “preconditioning” of a wavefunction (Acton, 1997)

Ψ = M̂Ψ0 (4.1)

where Ψ0 is a simple and often time-independent Slater determinant reference function, and M̂
is an operator written in an exponential form M̂ = exp Ŝ. In quantum chemical problems, fast
convergence of the results was reported (McClain et al., 2016; Hagen et al., 2016).
In essence, the coupled-cluster method is about reconstructing the operator Ŝ for a specific

physical state Ψ . In other words, one replaces constructing of a Hilbert-space state vector by
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constructing of a Hilbert-space operator. The latter is usually an N × N matrix M̂, N → ∞,
but generally one also applies the truncations, i.e., finite-dimensional approximations M <∞.
For our purposes, one can assume that we deal with multiple flows of the Korteweg-type with

similar properties. It implies that in free logarithmic wave equation (2.3) one should upgrade
the function Ψ(x) = 〈x|M〉 from a scalar function to an N × N matrix function M (Znojil et
al., 2017)

i∂tM+
D̃

2
∇2M+ b ln

( 1
ρ0
MM†

)
M = 0 (4.2)

whereas normalization condition (2.2) is replaced with

tr (M†M) ≡ 〈M|M〉 =
∫

V

tr (M†M) dV =M (4.3)

where the symbol “tr” denotes the conventional matrix trace. Consequently, the total mass
density of such a system can be defined as

ρ = tr (M†M) (4.4)

then normalization condition (4.3) takes a habitual form.
Furthermore, the Madelung ansatz can be chosen in the form

M = R exp(iS) (4.5)

where R = R(x, t) and S = S(x, t) are self-adjoint invertible square matrices of rank N . Adjoint
and invertible matrix conditions are imposed here to satisfy the correspondence principle: we
must recover the conventional nonlinear Schrödinger equation at N = 1. Note that R and S do
not have to commute in general, and their order in Eq. (4.5) is chosen to eliminate S in the
logarithmic term in (4.2).
Furthermore, the matrices R and S are connected to the observables via the formulae

ρ = tr (R2) u = D̃ tr (∇S) (4.6)

for which reason we call U = D̃∇S the velocity vector matrix, and R2 the mass density matrix.
Substituting ansatz (4.5) into Eq. (4.2), we obtain

∂tR+∇R · U +
1

2
R∇ · U = 0

∂tS +
1

2D̃
U2 − D̃

2
R−1∇2R− b ln

( 1
ρ0
R2
)
= 0

(4.7)

where R−1 denotes the inverse matrix of R. From these, one can derive the following equations

∂tR2 +∇ · (R2U) = 0

∂tU + (U · ∇)U −
D̃2

2
∇(R−1∇2R)− bD̃R−2∇(R2) = 0

(4.8)

where R−2 denotes the inverse of the mass density matrix. Here, it is noticeable that the dimen-
sional parameter ρ0 has disappeared from the equations, indicating that the mass density and
flow velocity of our material do not depend on the scaling constant ρ0.
Applying the matrix trace operation to these equations and recalling definitions (4.6), we

obtain flow equations for the observables

∂tρ+∇ · tr (R2U) = 0
Du

Dt
≡ ∂tu+ tr [(U · ∇)U

]
= g (4.9)
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where

g = trG (4.10)

is a cumulative acceleration acting on the system, where

G =
D̃2

2
∇(R−1∇2R) + bD̃R−2∇(R2) (4.11)

is an acceleration vector matrix.
Equations (4.9) can, of course, be recognized as matrix analogues of the continuity and

Cauchy momentum equations for our system, respectively. These equations can be difficult to
use for actual derivation of the observables ρ and u due to their complex structure involving
products of non-commuting matrices. However, one should bear in mind that they are equivalent
to one matrix equation (4.2), which can be solved considerably easier. Once its solution is found,
equations (4.9) can be used for a fluid-mechanical interpretation of the results.

5. Examples

As an example, in this Section, we consider solutions for a case when M is a 2 × 2 matrix,
for reasons of simplification. For the same reasons, we also limit ourselves to a single spatial
dimension x→ x. Then wave equation (4.2) becomes

i∂tM+
1

2
D̃∂xxM+ b ln

( 1
ρ0
MM†)M = 0 (5.1)

while normalization condition (4.3) becomes

xR∫

xL

tr (M†M) dx =M (5.2)

assuming that the system is localized in the interval of x ∈ [xL, xR]; this formula comes from
the normalization condition

∫
dx tr (M†M) ≡ 〈M|M〉 = M , where integration is taken over a

spatial volume occupied by the system, M being a constant usually interpreted as a number of
particles inside such a volume.
Furthermore, below we consider the cases when the exact analytical solutions to Eq. (5.1)

are known.

5.1. Diagonal case

Let us assume the simplest case when M is imposed to be a diagonal 2 × 2 matrix. The
imposed diagonality indicates that the cross-channel coupling terms can be neglected, i.e., our
configuration or the material is a mixture of two independent components. The ground-state
solution to Eq. (5.1) can be found analytically. After some algebra, we obtain

M = √ρ0
[
ψ1(x, t) 0
0 ψ2(x, t)

]
=

[
R1(x, t) 0
0 R2(x, t)

]
exp

[
−iE1t 0
0 −iE2t

]
(5.3)

where ψa(x, t) are complex-valued functions.
In the fluid rest frame of reference, the solution has the form of the gausson, i.e., the Gaussian

parcel modulated by de Broglie plane wave

ψa(x, t) = Ca exp
(
−1
2
γx2 + νax− iEat

)
(5.4)
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where a = 1, 2, γ = 2b/D̃ > 0, and

Ea = b(1− lnC2a)−
1

2
D̃ν2a (5.5)

is energy of a wave in the a-th channel. The integration constants Ca and νa are related, together
with b, to a mean and variance of the solution. Note that this solution exists for models with a
positive value of γ, as discussed in the concluding section.
If one imposes also normalization condition (5.2) here, then one obtains an additional con-

straint for the integration constants

∆F1 +∆F2 = −2
√
γ

π

M

ρ0
(5.6)

where we denoted

∆Fa = Fa(xR)− Fa(xL) Fa(x) = C
2
a exp

(ν2a
γ

)
erf
(νa − γx√

γ

)

For instance, when xR and xL are set to, respectively, plus and minus infinity, then this constraint
takes a simple form

2∑

a=1

C2a exp
(ν2a
γ

)
=

√
γ

π

M

ρ0

Note that due to the Galilean symmetry of the logarithmic Schrödinger equation, one can
always generate solitary wave solutions from a solution (5.4), whose centers of mass propagate
with velocity va, independently for each channel. One can check also that solution (5.3) naturally
has a commutative property, [M†,M] = 0, thus eliminating the ordering uncertainty inside the
logarithmic term.
Finally, one can verify that cumulative acceleration (4.10) and acceleration matrix (4.11)

both vanish on solutions (5.3) and (5.4)

(G)x =

[
0 0
0 0

]
g = 0 (5.7)

which means that the material derivative of flow velocity is zero for this solution.

5.2. Off-diagonal case

Now let us assume that the channel-coupling terms are dominating. Therefore, one can
impose thatM is an off-diagonal matrix

M = √ρ0
[
0 ψ2(x, t)

ψ1(x, t) 0

]
=

[
0 R2(x, t)

R1(x, t) 0

]
exp

[
−iE1t 0
0 −iE2t

]
(5.8)

where ψa(x, t) are complex-valued functions.
The ground-state solution of Eq. (5.1) can be found analytically. In the rest frame, it also

has the form of the Gaussian modulated by the de Broglie plane wave

ψa(x, t) = Ca exp
(
−1
2
γx2 + νax− iEat

)
(5.9)

where a = 1, 2, and

Ea = b(1− lnC2a)−
1

2
D̃ν2a (5.10)
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is energy of a wave for the a-th channel, Ca and νa are integration constants. As in the dia-
gonal case above, this solution exists for models with a positive value of γ, as discussed in the
concluding section.

If one imposes also normalization condition (5.2) then one obtains an additional constraint
for the integration constants, which is identical to Eq. (5.6).

Finally, acceleration matrix (4.11) takes a non-zero value on solutions (5.8), (5.9), given by

(G)x = bD̃(ν2 − ν1)
[
1 0
0 −1

]
(5.11)

but the cumulative acceleration (4.10) still vanishes, thus indicating that the material derivative
of flow velocity is zero for this solution.

6. Conclusion

In this paper, we formulated a formal mapping between a large class of nonlinear wave equations
and flow equations of a barotropic fluid with internal surface tension and capillary effects. Then
we generalized quantum wave equations of a logarithmic type to a matrix form. Furthermore, we
mapped this equation to matrix flow equations of multi-channel or multi-component Korteweg-
-type materials including fluids with internal surface tension and capillary effects.

Aside from being a concise way of writing flow equations, such mapping reveals the existence
of a Hilbert space of states represented by different solutions for the same set of boundary
conditions. This means that the material can randomly “choose” either of these states, so that
a statistical ensemble occurs.

Furthermore, in Section 5, we studied two simplest examples of the model, namely, a case
of 2× 2 matrices in one-dimensional space, assuming a positive value of γ and either a diagonal
or off-diagonal form. We analytically derived Gaussian-type matrix solutions, and studied them
in the context of fluid mechanics. It should be emphasized that the solutions presented above
exist only for models with positive values of γ where they usually represent states with the
lowest energy – an analogue of ground states in quantum mechanics. For negative values of γ,
the topology of the problem changes crucially, and the topological solitons emerge, as was shown
for the scalar (rank-1 matrix) case (Zloshchastiev, 2018b).

We expect that these matrix fluid models will find application not only in the theory of
low-temperature superfluids, but also for mechanical studies of arrays of microfluids and other
multi-channel flows where capillary effects are substantial.
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